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Typical 6-hour analysis cycle.

Bayes interpretation: a forecast (the “prior”), is combined with the
new observations, to create the Analysis (IC) (the “posterior”)



The observing system a few years ago...
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Now we have even more satellite data...



Typical distribution of the observing systems in a 6 hour period:
a real mess: different units, locations, times

DATA DISTRIBUTION @1SEPS7@QZ-@1SEPS7PAZ
ALIRCRAFT




Typical distribution of the observing systems in a 6 hour period:
a real mess: different units, locations, times
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Model grid points (uniformly distributed) and observations
(randomly distributed). In a local approach only observations
within a radius of influence may be considered




Some statistics of NWP...

Permanent verifications of the forecast:

ECMWF FORECAST VERIFICATION 12UTC
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Some comparisons...

ECMWEF scores compared to other major global centre:

R.m.s. error (hPa) of surface-pressure forecasts for three and five days ahead
e ECMWF UK USA JAPAN
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We are getting better... (NCEP observational increments)
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Comparisons of Northern and Southern Hemispheres

Anomaly correlation (%) of 500hPa height forecasts

—— Northern hemisphere —— Southern hemisphere
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Satellite radiances are essential in the SH
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More and more satellite radiances...

number of data used per day (millions)
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Intro. to remote sensing and data
assimilation: a toy example

 Assume we have an object, a stone in space

« We want to estimate its temperature T (°K) accurately but we
measure the radiance y (W/m?) that it emits. We have an obs.

model, e.q.: y=hT)~ oT*



Intro. to remote sensing and data
assimilation: a toy example

* Assume we have an object, a stone in space

« We want to estimate its temperature T (°K) accurately but we
measure the radiance y (W/m?) that it emits. We have an obs.

model, e.q.: y=nwT)~oT*
* (The observational model is also called forward model)
We also have a forecast model for the temperature

T(t.)=m|T®)];

At
e.g., Tt )=T()+ E[SW heating-LW cooling]

I+1



Intro. to remote sensing and data
assimilation: a toy example

 Assume we have an object, a stone in space

« We want to estimate its temperature T (°K) accurately but we
measure the radiance y (W/m?) that it emits. We have an obs.

model, e.q.: y=h(T)~oT"*
 (The observational model is also called forward model)
We also have a forecast model for the temperature
T(t,,)=m|[T()];
e.g., T(t,,,)=T(t,)+ At| SW heating-LW cooling |

« We will derive the data assim eqs (KF and Var) for this toy
system (easy to understand!)



Intro. to remote sensing and data
assimilation: a toy example

- Assume we have an object, a stone in space
« We want to estimate its temperature T (°K) accurately but we
measure the radiance y (W/m?) that it emits. We have an obs.
model, e.g.. y=hT)~oT*
* (The observational model is also called forward model)
* We also have a forecast model for the temperature
T(t.,)=m|T()l;
e.g., T(t,,,)=T(t,)+ At| SW heating-LW cooling |

« We will derive the data assim eqs (KF and Var) for this toy
system (easy to understand!)

« Will compare the toy and the real huge vector/matrix
equations: they are exactly the same!



Toy temperature data assimilation, measure radiance

We have a forecast T, (prior) and a radiance obs », = (1)) + &,

The new information (or innovation) is the
observational increment:

y, —h(T,)



Toy temperature data assimilation, measure radiance

We have a forecast T, (prior) and a radiance obs », = (1)) + &,

The new information (or innovation) is the
observational increment:

y, —h(T,)

We assume that the obs. and model errors are
unbiased, Gaussian and uncorrelated

The innovation can be written in terms of errors:

y, —h(T,))=h(T,)+€,—h(T,)=€,+h(T,)—h(T,)=€¢,— He,

where H =0h/dT includes changes of units
and observation model nonlinearity, e.g.,
WT)~oT*,0h/0T ~40T">



Toy temperature data assimilation, measure radiance

We have a forecast T, and a radiance obs Y, = /1(T,)+ &,

y,—h(Tl,)=¢,— HE,



Toy temperature data assimilation, measure radiance

We have a forecast T, and a radiance obs Y, = /1(T,)+ &,
y,—h(Tl,)=¢,— HE,

From an OI/KF (sequential) point of view:
T =T +w(y, —h(T)=T,+w(g, —HEg,)

or E =& +w(E,—HE))
Here w is a weight, and we want to find the optimal weight

Now, the analysis error variance (over many cases) is

22
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Toy temperature data assimilation, measure radiance

We have a forecast T, and a radiance obs Y, = /1(T,)+ &,

-h(T,))=¢,— Heg,

From an OI/KF (sequential) point of view:
T =T +w(y, —h(T)=T,+w(g, —HEg,)

or E =& +w(E,—HE))

In OI/KF we choose w to minimize the analysis error: ¢’ = ¢
By taking & > and
averaging in time
we can compute: G —G +w (G +Ho! CH) — ZWG H

assuming that &€,.€&, are uncorrelated



Toy temperature data assimilation, measure radiance
We have a forecast T, and a radiance obs Y, = /1(T,)+ &,

y,—h(Tl,)=¢,— HE,

From an OI/KF (sequential) point of view:
T =T, +w(y,—h(T,)=T,+w(e,— Heg,)
or E =& +w(E,—HE))

2
a

In OI/KF we choose w to minimize the analysis error: 2 =¥

o:=o0,+w (0. +Ho,H)-2wo, H

2 _
From 90, —(Q  Weobtain WZGZH(G(%-I—HGiH) 1
ow do it!




Toy temperature data assimilation, measure radiance

Repeat: from an OI/KF point of view the analysis (posterior) is:
T =T +w(y, —h(T,)=T, +w(e, —Heg,)
with  w=0,H(0. +0,H")"
Note that the scaled weight 11//{ is between 0 and 1
f o.>>0.H’ T =T,
f o’<<o,H’ I, =wy,

The analysis interpolates between the background and the
observation, giving more weights to smaller error variances.



Toy temperature data assimilation, variational approach

We have a forecast T, and a radiance obs Y, = /1(T,)+ &,

Innovation: Yo h(Tb)
From a 3D-Var point of view, (T, -T,) (WT)-vy)
we want to find a T, that 2J = —4—"—+ "
minimizes the cost function J: O, O,

This analysis temperature T is closest to both the
forecast 7, and the observation y, and maximizes the

likelihood of T_~T,, , given the information we have.

It is easier to find the analysis increment T_-T, that
minimizes the cost function J rather than the analysis
T, (this is called incremental method)



Toy temperature data assimilation, variational approach

We have a forecast T, and a radiance obs Y, = /1(T,)+ &,
Innovation: Yo ™ h(Tb)

_(T,-T,)  (WT)-y,)

From a 3D-Var point of view, 2] .
we want to find a Ta_that i o) ,f 0) ’
minimizes the cost function J:

o

The cost function J comes from a maximum likelihood analysis:




Toy temperature data assimilation, variational approach

We have a forecast T, and a radiance obs Y, = /1(T,)+ &,
Innovation: Yo ™ h(Tb)

_(T,-T,)  (WT)-y,)

From a 3D-Var point of view, 2] .
we want to find a T, that o sz o’
minimizes the cost function J:

o

. T'truth B Tb :|

1
cX
V27O, p{ 20,

Likelihood of T, ,, given T,:




Toy temperature data assimilation, variational approach

We have a forecast T, and a radiance obs Y, = /1(T,)+ &,
Innovation: Yo ™ h(Tb)

_(T,-T,)  (WT)-y,)

From a 3D-Var point of view, 2] .
we want to find a T, that o sz o’
minimizes the cost function J:

o

Likelihood of T,, given T,: ! exp| — (T =T, )2 _
N V27o, 20,
) -
Likelihood of (T,,,) given . Lol T =)
V2ro, 20,




Toy temperature data assimilation, variational approach

We have a forecast T, and a radiance obs Y, = /1(T,)+ &,

Innovation: Yo ™ h(Tb)
2 2
From a 3D-Var point of view, 2] . = (Ta _ Tb) + (h(Ta) B yo)
we want to find a T, that o sz 602
minimizes the cost function J: ) -
. . 1 (T, =T,)
Likelihood of T, . given T,: exp| ——1h b
truth b \/E(Tb P 265
_ -
Likelihood of (T,,,) given . Lol T =)
V27o, 20°

Joint likelihood of T, —

2mo, 0,

exp

(

Tvtruth _ Tb )2 (h(];ruth) _ y() )

2

2
20,

20

2

o

Minimizing the cost function maximizes the likelihood of the truth



Toy temperature data assimilation, variational approach

Again, we have a forecast T, and a radiance obs Y, =/(T}) + &
Innovation: Yo — h(Tb)

From a 3D-Var point of view, (T,-T,) (WT)-y,)
we want to find (T, -T,) that 2J i = 5 + 5
minimizes the cost function J. ’ ’
This maximizes the likelihood of

T,~T.un given both 7, and y,




Toy temperature data assimilation, variational approach

We have a forecast T, and a radiance obs Y, = 1(T,)+ &,

Innovation: Yo — h(Tb)
From a 3D-Var point of view, (T,-T,)" (WT)-y,)
_Tb) that 2Jmin _ 2 + 2

we want to find (T

a

C L. . O, 0]
minimizes the cost function J:

o

Now hT)-y =h(T,)—y +H(T,—T,)

So that from 02J /d(T,-T,)=0  we get

1 H?
(Ta —Tb)(G—Z-F 5

4

L _ Q= hT,)
0 o)

a 4

):(Ta _Tb)



Toy temperature data assimilation, variational approach

We have a forecast T, and a radiance obs Y, = 1(T,)+ &,

Innovation: Yo — h(Tb)
From a 3D-Var point of view, (T,-T,)" (WT)-y,)
we want to find (7,-T,) that 2J i = o2 + o>
b o

minimizes the cost function J:
Now hT)-y =h(T,)—y +H(T,—T,)

So that from 02J /d(T,-T,)=0  we get

O, o, o) o

a 4

or T,=T,+w(y, —hT,))

—1
w=(0,"+Ho,H) Ho, =0.Ho,

where now



Toy temperature data assimilation, variational approach

We have a forecast T, and a radiance obs Y, = 1(T,)+ &,

Innovation: Yo — h(Tb)
From a 3D-Var point of view, (T,-T,)" (WT)-y,)
we want to find (7,-T,) that 2J i = o2 + o>
b o

minimizes the cost function J:

I =T +w(y, —h(T,)=T, +w(e, — Heg,) where

1 B
W= (6;2 —- HGO_ZH) Ho=0'Ho,

This variational solution is the same as the one obtained with
Kalman filter (sequential approach, like Optimal Interpolation):

with w = GZH(G; + GZH2)_1 (Show the w’s are

the same!)
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Typical 6-hour analysis cycle.

Forecast phase, followed by Analysis phase



Toy temperature analysis cycle (Kalman Filter)

Forecasting phase, from ¢, to t, . T, (1, =m|T, )]

Forecast error: g, (tm) =T, (tm) — Tt(ti+1) —
m[Ta (tl)] o m[]—;(tl)] T gm (ti+1) — Mga (tl) + Sm (ti+1)

So that we can predict the forecast error variance

613 (ti01) = Mzaj (1)+0;5 Q= 8;31 (ti01)

(The forecast error variance comes from the analysis and model errors)



Toy temperature analysis cycle (Kalman Filter)

Forecasting phase, from ¢, to t, . T, (1, =m|T, )]

Forecast error: g, (tm) =T, (tm) — Tt(ti+1) —
m[Ta (tl)] o m[]—;(tl)] T gm (ti+1) — Mga (tl) + Sm (ti+1)

So that we can predict the forecast error variance

613 (ti01) = Mzaj (1)+0;5 Q= 8;31 (ti01)

(The forecast error variance comes from the analysis and model errors)

Now we can compute the optimal weight (KF or Var, whichever form is
more convenient, since they are equivalent):

w=0.H(c) +Ho H) ' =(0,> + Ho,’H) HGo)’



Toy temperature analysis cycle (Kalman Filter)

Analysis phase: we use the new observation y.(t.,)

compute the new observational increment v, (t.)— h(Tb (tm))

and the new analysis:

Ta (ti+1) — Tb (ti+1 ) + Wi+1 I:y() (ti+1) o h(Tb (ti+1 )):l

We also need the compute the new analysis error variance:

from o’=0,+Ho’H
)
O O
2 _ o b . 2 2
weget O,(f, )= > ) =(-w_ H)0o,, <0,
o +H 0O, .

now we can advance to the nextcycle 7,052, 35--



Summary of toy system equations (for a scalar)
L. )=mT,@)|  o,t.)=M[c2t)|+0
M =0m/JdT

Interpretation...

“We use the model to forecast 7, and to
update the forecast error variance from ¢, to ¢, ”

Q: model deficiencies error covariance



Summary of toy system equations (for a scalar)

T,.)=m|T,t)]  o}(t,)=M[c)] M =0m/oT

“We use the model to forecast 7, and to
update the forecast error variance from ¢, to ¢, "

i+1

At Ty Ta:Tb+w[y0—h(Tb)]

“The analysis is obtained by adding to the background the
innovation (difference between the observation and the first
guess) multiplied by the optimal weight:



Summary of toy system equations (for a scalar)

T, )=mT,@)| o, )=M[c2t)|+Q  M=0m/oT

“We use the model to forecast 7, and to
update the forecast error variance from ¢, to ¢,

i+1

At Lian T,=T, +W|:yo - h(Tb):I

“The analysis is obtained by adding to the background the
innovation (difference between the observation and the first
guess) multiplied by the optimal weight:

w=0,H(o.+Ho,H)"

“The optimal weight is the background error variance divided
by the sum of the observation and the background error
variance. H = oh / dT ensures that the magnitudes and units
are correct.”



Summary of toy system equations (cont.)

w=0,H(o,+Ho,H)"

“The optimal weight is the background error variance divided
by the total variance (sum of the observation and the
background error variance). H = dh /0T ensures that the
magnitudes and units are correct.”

Note that the larger the background error variance, the
larger the correction to the first guess.



Summary of toy system equations (cont.)

The analysis error variance is given by

2 22
2 [ Go Gb

O =
o’ +H’0;

a

j: (1-wH)o;

“The analysis error variance is reduced from the background
error by a factor (1 - scaled optimal weight)”



Summary of toy system equations (cont.)

The analysis error variance is given by

2 22
2 [ Go Gb

O =
o’ +H’0;

a

]: (1-wH)o;

“The analysis error variance is reduced from the background
error by a factor (1 - scaled optimal weight)”

This can also be written as

a

0= (Gb_z + Go_sz)

“The analysis precision is given by the sum of the background
and observation precisions”



Equations for toy and real huge systems

These statements are important because they hold true for
data assimilation systems in very large multidimensional
problems (e.g., NWP).

Instead of model, analysis and observational scalars, we
have 3-dimensional vectors of sizes of the order of 107-108



Equations for toy and real huge systems

These statements are important because they hold true for
data assimilation systems in very large multidimensional
problems (e.g., NWP).

Instead of model, analysis and observational scalars, we
have 3-dimensional vectors of sizes of the order of 107-108

We have to replace scalars (obs, forecasts) by vectors
Tbﬁxb; Taﬁxa; yo%yo;
and their error variances by error covariances:

o,—>B;, 0. >A; 0. —R;



Interpretation of the NWP system of equations

“We use the model to forecast from ¢, to ¢, ,
X, ()= M[x,(1,)]

At lin X =X, +K_y0 — H(Xb):l



Interpretation of the NWP system of equations

“We use the model to forecast from ¢, to ¢, ,
X, (t,,) = M|x,(1,)]

At lin X =X, +K_y0 — H(Xb):l

“The analysis is obtained by adding to the background the
innovation (difference between the observation and the first
guess) multiplied by the optimal Kalman gain (weight) matrix”

K=BH (R+HBH")"



Interpretation of the NWP system of equations

“We use the model to forecast from ¢, to ¢, ,
X, ()= M[x,(1,)]

At lin X =X, +K_y0 — H(Xb):l

“The analysis is obtained by adding to the background the
innovation (difference between the observation and the first
guess) multiplied by the optimal Kalman gain (weight) matrix”

K=BH (R+HBH")"

“The optimal weight is the background error covariance divided by
the sum of the observation and the background error covariance.

H = 0H / dx ensures that the magnitudes and units are correct.
The larger the background error variance, the larger the correction
to the first guess.”



Interpretation of the NWP system of equations

Forecast phase:
“We use the model to forecast from t tot,, ”

i+1
x,(t,,,)=M|[x, ()]



Interpretation of the NWP system of equations

Forecast phase:
“We use the model to forecast from t tot,, ”

i+1
x,(t,,,)=M|[x, ()]

“We use the linear tangent model M and its adjoint M’ to
forecast B (plus model errors covariance Q)”

B(t,,)=M|A()|M" +Q



Interpretation of the NWP system of equations

Forecast phase:
“We use the model to forecast from t tot,, ”

i+1
x,(t,,,)=M|[x, ()]

“We use the linear tangent model and its adjoint to
forecast B”

B(t,,)=M|A@)|M’
“However, this step is so horrendously expensive that it

makes Kalman Filter computationally unfeasible for NWP”.

“Ensemble Kalman Filter solves this problem by estimating
B using an ensemble of forecasts.”



Interpretation of the NWP system of equations

Forecast phase:
“We use the model to forecast from [, tot, "

X, (,,,) = M[x,(1)]
B(7,,)=M|A@)M"  “This is too expensive!”

“Ensemble Kalman Filter solves this problem by estimating
B using an ensemble of K~50-100 forecasts.”

x,(1,)=M|x\(t)|.k=1.2..Kk  ensemble of forecasts

1
B(z+1)_ﬁz(xb X,)*(X, —X,) = _IXXT



Summary of NWP equations (cont.)

The analysis error covariance is given by
A=(I-KH)B

“The analysis covariance is reduced from the background
covariance by a factor (I - scaled optimal gain)”



Summary of NWP equations (cont.)

The analysis error covariance is given by
A=(I-KH)B

“The analysis covariance is reduced from the background
covariance by a factor (I - scaled optimal gain)”

This can also be written as
A7"=B"'+HR'H

“The analysis precision is given by the sum of the background
and observation precisions”



Summary of NWP equations (cont.)

The analysis error covariance is given by
A=(I-KH)B

“The analysis covariance is reduced from the background
covariance by a factor (I - scaled optimal gain)”

This can also be written as
A"'=B'"+H'R'H

“The analysis precision is given by the sum of the background
and observation precisions”

K=BH'(R+HBH')"'=B"'+H'R'H)'H'R™

“The variational approach and the sequential approach are
solving the same problem, with the same K, but only KF (or
EnKF) provide an estimate of the analysis error covariance”



Variational: 3D-Var

J = miﬂ%[(xa -x")' B (x* =x")+ (Hx —y) R (Hx" - y)]

Distance to forecast Distance to observations
at the analysis time

4D-Var

1 -
J = mmE[(x0 —x))' B (x, - x))+ D (Hx. —y)"R '(Hx, —y)]

i=1

Distance to background at the Distance to observations in a
initial time time window interval t,-t,
Control variable X(Z,) Analysis  X(1)) = M[x(7,)]

It seems like a simple change, but it is not! (e.g., adjoint)
What is B? It should be tuned...



Ensemble Transform Kalman Filter
(EnKF)

Forecast step'

n k M ( n— lk)
B = ﬁx X!, where X! =|x) —XV;..,x0 - X |
Analysis step:
x*=x'+K (y —Hx);K =B H'(R+HB H")"

The new analysis error covariance in the ensemble space 1s (Hunt et al.
2007)

~

A, =[(K-DI+HX) R @EX)]

And the new ensemble perturbations are given by a matrix transform:

~

X:=X'[(K-1)A,]"



Comparison of 4-D Var and LETKF at JMA
T. Miyoshi and Y. Sato

 4D-Var and EnKF are the two advanced, feasible methods

* There will be a workshop on them in Buenos Aires (Nov'08)!!!

 In Ensemble Kalman Filter the background error covariance
B is approximated and advanced in time with an ensemble of
K forecasts. In the subspace of the ensemble, B=Il so that
matrix inversions are efficient.

« So far, comparisons show EnKF is slightly better than 3D-
Var, but there has not been enough time to develop tunings

« At JMA, Takemasa Miyoshi has been performing
comparisons of the Local Ensemble Transform Kalman Filter
(Hunt et al., 2007) with their operational 4D-Var

« Comparisons are made for August 2004



Comparison of 4D-Var and LETKF at JMA
T. Miyoshi and Y. Sato
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Comparison of LETKF and 4D-Var at JMA
T. Miyoshi and Y. Sato

against SONDE

RMSE BIAS

o o o)

N.H. |
. | Verifying

same

against

, [ A+« 7 71 Rawinsondes
Tropics / -

worse

S.H.

worse




Comparison of 4-D Var and LETKF at JMA

18th typhoon in 2004, IC 12Z 8 August 2004
T. Miyoshi and Y. Sato
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Comparison of 4-D Var and LETKF at JMA

RMS error statistics for all typhoons in August 2004
T. Miyoshi and Y. Sato
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Summary

Data assimilation methods have contributed much to the
improvements in NWP.

A toy example is easy to understand, and the equations are
the same for a realistic system

Kalman Filter (too costly) and 4D-Var (complicated) solve
the same problem (if model is linear and we use long
assimilation windows)

Ensemble Kalman Filter is feasible and simple
It is starting to catch up with operational 4D-Var
EnKF can also estimate observational errors online

Important problems: estimate and correct model errors &
obs. errors, optimal obs. types and locations, tuning
additive/multiplicative inflation, parameters estimation,...

— Tellus: 4D-Var or EnKF? In press

— Papers posted in “Weather Chaos UMD”, Hunt et al, Szunyogh et al
— Workshop in Buenos Aires Nov '08



